Информационное обеспечение агроландшафтовых исследований

Information support of agro-landscape researches

Баденко / Badenko V.
Владимир Львоич
(vbadenko@gmail.com)
dоктор технических наук.
ФГБОУ ВПО «Санкт-Петербургский государственный университет», профессор кафедры картографии и геоинформатики.
g. Санкт-Петербург

Иванов / Ivanov D.
Дмитрий Анатольевич
(volok123@gmail.com)
dоктор сельскохозяйственных наук, профессор,
член-корреспондент Россельхозакадемии.
ФГБНУ «Всероссийский НИИ сельскохозяйственного использования мелиорированных земель», заместитель директора по координации.
pос. Эммаус Тверской области

Топаж / Topaj A.
Александр Григорьевич
(alex.topaj@gmail.com)
dоктор технических наук.
ФГБНУ «Агрофизический научно-исследовательский институт», заведующий лабораторией математического моделирования агрокосистем.
g. Санкт-Петербург

Введение
Для современного этапа развития сельскохозяйственной науки характерна ориентация исследований на системный поиск фундаментальных причинно-следственных связей природных и антропогенных процессов, протекающих в агроландшафте [1]. Фундаментальные исследования в этой области позволяют оценить целесообразность использования тех или иных мероприятий и послужат основой создания информационных технологий управления продуктивностью агроландшафта при сохранении его экологического равновесия, обеспечении устойчивого развития и сбережения природных ресурсов, в первую очередь плодородной почвы [2]. Целенаправленное изучение процессов и явлений в агроландшафтах проводят на специальных агроландшафтовых полигонах. При этом важнейшей проблемой остается эффективная интеграция моделей процессов и явлений в агроландшафте и ГИС [3]. В настоящей работе обобщен опыт авторов по изысканию в этом направлении и представлены результаты для агроэкологического полигона "Губино" ВИИС Сельскохозяйственного Использования Мелиорированных Земель в поселке Эммаус Тверской области, предназначенного для проведения агроландшафтовых исследований [4].

Материалы и методы
Общая схема предлагаемого метода состоит из следующих этапов:
1. Подготовительный этап.
На этом этапе формируется база данных ГИС. Для
пространственной привязки используются данные дистанционного зондирования, результаты наземной съемки с помощью GPS-приемника и имеющиеся картографические материалы. На этой же стадии проводится обследование агроклиматических и агроландшафтных свойств почвы агроландшафтного полигона, которое необходимо для проведения расчетов с помощью динамической модели продукционного процесса сельскохозяйственных растений AGRO TOOL [5]. Определенные в ходе полевых и лабораторных исследований параметры заносятся в стационарную базу данных AGRO TOOL [6].

2. Этап оперативного сопровождения ландшафтного опыта в текущем году.

Этот этап проводится в специализированной среде полиарвариантного анализа APEX [7-8], которая предоставляет широкие возможности по автоматизации планирования и проведения многофакторных компьютерных экспериментов с моделью продукционного процесса. Смысловая интерпретация результатов подобных экспериментов дает возможность прогнозировать даты наступления фенологических фаз развития, оценивать границы продуктивности посева, предсказывать адаптивные реакции растений на конкретные сроки и нормы агротехнических мероприятий и т.д. По сути это означает информационную поддержку принятия агрономических решений.

3. Этап анализа.

На данной стадии после сбора урожая проводится анализ и сравнение результатов, полученных при моделировании и в реальности. Сравнение модельных и экспериментальных данных служит основой возможной корректировки параметров модели (параметрическая идентификация) и заключений о степени ее адекватности (верификация).

Детальное рассмотрение представленныхэтапов позволяет сделать ряд замечаний. Так, в задачах по информационной поддержке агроландшафтных исследований основной исследуемый фактором, то есть источником полиарвариантности модельных расчетов, выступает неоднородность почвенных характеристик в пределах изучаемого сельскохозяйственного поля. Этот тип полиарвариантности допускает такое же исследование в рамках системы APEX, как и любой другой. Единственной характеристикой объекта, выступающей тот факт, что и исходные данные (значимые для модельных расчетов характеристики почвы) и результаты полиарвариантного анализа (например, модельные урожаи) в этом случае имеют вполне конкретную географическую привязку и могут быть естественным образом визуализированы в картографическом интерфейсе. Последовательно функциональность традиционно берет на себя конкретная область информационных технологий и конкретный класс программных продуктов – ГИС. В то же время планирование схемы многофакторного эксперимента, технические вопросы взаимодействия с конкретной внешней моделью и статистический анализ результатов, по-видимому, должны оставаться прерогативой специализированных систем типа APEX. Отсюда вытекает необходимость разработки методики интеграции для этих классов информационных систем в разрезе двух основных подходов: совместное использование – импорт исходных данных о почвенных условиях из ГИС в оболочке интегрированного моделирования и обратный экспорт получившихся (возможно, предварительно статистически обработанных) результатов компьютерного эксперимента в ГИС для их пространственной визуализации.

Основные этапы методики интеграции системы полиарвариантного анализа APEX с ГИС следующие:

1. Формирование в среде ГИС обьектов для дальнейшего исследования в среде APEX. Здесь применяются методы пространственного анализа для пересчета набора точек отбора образцов в набор единиц управления (квазиквадратных почвенных контуров) интересных для исследований и, соответственно, моделирования.

2. Формирование файла формата MS Excel для загрузки в APEX с ключевым полем – идентификатором расчетного участка в ГИС.

3. Импорт информации в APEX.

4. Формирование проекта в среде APEX.

5. Расчет проекта в среде APEX.

6. Анализ результатов расчета проекта в среде APEX с использованием встроенных механизмов статистической обработки (однофакторный, многофакторный, дисперсионный анализ и т.д.).

7. Экспорт результатов анализа в файл формата APEX с ключевым полем – идентификатором расчетного участка в ГИС. Т.e. отправка полученного файла формата MS Excel в среде ГИС и связывание получившегося набора данных с таблицей пространственно-географической информации о расчетных участках по вторичному ключу – сохраненного на всех этапах работы в APEX идентификатору расчетного участка в ГИС.

8. Построение в интерфейсе ГИС тематических карт для картографического анализа и пространственной визуализации результатов из APEX.

Результаты и обсуждение

Агроландшафтный стационар "Тушино" расположен в центральной части конечно-моренного холма, характеризуется слабой пересеченностью рельефа и относительной высотой 15 м. Делинктура ошила имела вид непрерывных параллельных полос, расположенных перпендикулярно дренажу и пересекающих все семь выделенных ландшафтных позиций (трасс). Учет параметров растительного покрова и агрохимических показателей производился в регулярных точках опробования, отстоящих друг от друга на 40 метрах [4, 9].

После формирования базы данных был создан отдельный проект вычислительного факторного эксперимента и проведены модельные расчеты в среде полиарвариантного анализа APEX. После чего различные результаты могут быть экспортированы в среду ГИС для пространственного анализа и построения темати-
ческих карт. Так, на рис. 1А представлена тематическая карта урожайности пшеницы, а на рис. 1Б — тематическая карта наступления фазы цветения. Обе тематические карты относятся к моделированию продукционного процесса пшеницы с погодными условиями 2007 года.

Заключение
Представлен метод информационной поддержки проведения агроландшафтных исследований. Метод основан на интеграции системы поливariantного анализа APEX и ГИС. При этом в качестве динамической модели в APEX использовалась динамическая модель продукционного процесса сельскохозяйственных растений AGROTOOL, а в качестве программного обеспечения ГИС — MapInfo. Применение метода, ранее успешно апробированное на полях Мещерской опытной станции Агрофизического НИИ, для условий агроландшафтного стационара "Туторник" продемонстрировало универсальность метода.

Создана база данных ГИС для агроландшафтного полигонов ВНИИМЗ, атрибутивная информация по выделенным элементарным единицам управления помещена в стационарную базу данных AGROTOOL. Представленные в виде тематических карт результаты позволяют сделать вывод о решении поставленной задачи, возможности информационной поддержки проведения агроландшафтных исследований в следующих сезонах вегетации и перспективах расширения масштабов практического использования полученного информационного комплекса.

Литература